博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
初识机器学习——吴恩达《Machine Learning》学习笔记(六)
阅读量:4967 次
发布时间:2019-06-12

本文共 950 字,大约阅读时间需要 3 分钟。

Logistic回归

分类(Classification)

如垃圾邮件和非垃圾邮件、肿瘤的良性和恶性等,分类一般有二分类以及多分类问题。

0,一般解析为没有某样东西;1,一般解析为拥有某样东西。至于正类和负类,视具体情况而分。

不推荐将线性回归用于分类问题。

Logistic回归,介于0和1之间,视为一种"分类算法"。

假设陈述(Hypothesis Representation)

Logistic回归模型

 

P(y=1|x;o)表示当x=o时,y=1的概率,P(y=1|x;o) + P(y=0|x;o) = 1,即P(y=0|x;o) = 1 - P(y=1|x;o)

决策界限(Decision boundary)

决策边界的概念,决策边界是假设函数的属性,而不是数据集的特征。因为一开始选择Sigmoid函数的时候,函数里面就带了边界特征。

 

代价函数(Cost Function) 

对于logistic回归,之前线性回归的代价函数已经不能再适用了。因为经过代换后的代价函数,是一个非凸函数,难以找到全局最优解。因此,需要更换代价函数。重新定义代价函数,使其为凸函数,以便使用梯度下降法求最优。

Logistic回归的代价函数及y=1时的函数图像

Logistic回归的代价函数及y=0时的函数图像

简化代价函数与梯度下降(Simplified cost function and gradient descent)

Logistic回归代价函数的简化

跟线性回归一样,可以使用特征缩放,对Logistic回归进行缩放

高级优化(Advanced optimization)

梯度下降算法并不是唯一的寻求最优解的算法,还有高级优化算法,如共轭梯度算法(Gradient descent)、BFGS、L-BFGS,他们的优点是:不需要手动选择学习率,比梯度下降法更加快,缺点是:更加地复杂。

 

使用Octave调用高级优化算法

步骤解析

多元分类:一对多(Multi-class classification One-vs-all)

把m个分类中每个类别看做与其他类别不同,做二元分类

转载于:https://www.cnblogs.com/haifengbolgs/p/9325732.html

你可能感兴趣的文章
dataTable.NET的search box每輸入一個字母進行一次檢索的問題
查看>>
Python 文件处理
查看>>
邻接表详解
查看>>
服务器一:分布式服务器结构
查看>>
迭代dict的value
查看>>
eclipse package,source folder,folder区别及相互转换
查看>>
Py 可能是最全面的 python 字符串拼接总结(带注释版)
查看>>
如何从亿量级中判断一个数是否存在?
查看>>
客户数据(类的调用)
查看>>
cookie session 和登录验证
查看>>
(转载)博弈汇总【巴什博奕,威佐夫博弈,尼姆博弈,斐波那契博弈】
查看>>
【数据结构作业】-【带头结点的单链表就地逆置】
查看>>
【Pet HDU - 4707 】【利用并查集找深度】
查看>>
《Java程序设计实验》 软件工程18-1,3 OO实验2
查看>>
【Herding HDU - 4709 】【数学(利用叉乘计算三角形面积)】
查看>>
【7-9 有重复的数据I (20 分)】【此题卡输入,需要自己写个输入挂】
查看>>
JRebel安装部署,激活
查看>>
OPENSSL使用方法
查看>>
下载GO的开源开发工具LITEIDE
查看>>
接口操作XML
查看>>